

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	EAV-Django 1.4.7 documentation

EAV-Django

EAV-Django is a reusable Django application which provides an implementation of
the Entity-Attribute-Value data model.

Entity-Attribute-Value model (EAV), also known as object-attribute-value
model and open schema which is used in circumstances where the number of
attributes (properties, parameters) that can be used to describe a thing (an
“entity” or “object”) is potentially very vast, but the number that will
actually apply to a given entity is relatively modest.

(See the Wikipedia article [http://en.wikipedia.org/wiki/Entity-attribute-value_model]
for more details.)

EAV-Django works fine with traditional RDBMS (tested on SQLite and MySQL).

Priorities

The application grew from an online shop project, so it is pretty practical and
not just an academic exercise. The main priorities were:

	flexibility of data,

	efficiency of queries, and

	maximum maintainability without editing the code.

Of course this implies trade-offs, and the goal was to find the least harmful
combination for the general case.

Features

All provided models are abstract, i.e. EAV-Django does not store any information
in its own tables. Instead, it provides a basis for your own models which will
have support for EAV out of the box.

The EAV API includes:

	Create/update/access: model instances provide standart API for both “real”
fields and EAV attributes. The abstraction, however, does not stand in your
way and provides means to deal with the underlying stuff.

	Query: BaseEntityManager includes uniform approach in filter() and
exclude() to query “real” and EAV attributes.

	Customizable schemata for attributes.

	Admin: all dynamic attributes can be represented and modified in the Django
admin with no or little effort (using eav.admin.BaseEntityAdmin). Schemata
can be edited separately, as ordinary Django model objects.

	Facets: facet search is an important feature of online shops, catalogues,
etc. Basically you will need a form representing a certain subset of model
attributes with appropriate widgets and choices so that the user can choose
desirable values of some properties, submit the form and get a list of
matching items. In general case django-filter would do, but it won’t work
with EAV, so EAV-Django provides a complete set of tools for that.

Examples

Let’s define an EAV-friendly model, create an EAV attribute and see how it
behaves. By “EAV attributes” I mean those stored in the database as separate
objects but accessed and searched in such a way as if they were columns in the
entity’s table:

from django.db import models
from eav.models import BaseEntity, BaseSchema, BaseAttribute

class Fruit(BaseEntity):
 title = models.CharField(max_length=50)

class Schema(BaseSchema):
 pass

class Attr(BaseAttribute):
 schema = models.ForeignKey(Schema, related_name='attrs')

in Python shell:

define attribute named "colour"
>>> colour = Schema.objects.create(
... title = 'Colour',
... name = 'colour', # omit to populate/slugify from title
... datatype = Schema.TYPE_TEXT
...)

create an entity
>>> e = Fruit.objects.create(title='Apple', colour='green')

define "real" and EAV attributes the same way
>>> e.title
'Apple'
>>> e.colour
'green'

>>> e.save() # deals with EAV attributes automatically

list EAV attributes as Attr instances
>>> e.attrs.all()
[<Attr: Apple: Colour "green">]

search by an EAV attribute as if it was an ordinary field
>>> Fruit.objects.filter(colour='yellow')
[<Fruit: Apple>]

all compound lookups are supported
>>> Fruit.objects.filter(colour__contains='yell')
[<Fruit: Apple>]

Note that we can access, modify and query colour as if it was a true Entity
field, but at the same time its name, type and even existance are completely
defined by a Schema instance. A Schema object can be understood as a class, and
related Attr objects are its instances. In other words, Schema objects are like
CharField, IntegerField and such, only defined on data level, not hard-coded in
Python. And they can be “instantiated” for any Entity (unless you put custom
constraints which are outside of EAV-Django’s area of responsibility).

The names of attributes are defined in related schemata. This can lead to fears
that once a name is changed, the code is going to break. Actually this is not
the case as names are only directly used for manual lookups. In all other cases
the lookups are constructed without hard-coded names, and the EAV objects are
interlinked by primary keys, not by names. The names are present if forms, but
the forms are generated depending on current state of metadata, so you can safely
rename the schemata. What you can break from the admin interface is the types.
If you change the data type of a schema, all its attributes will remain the same
but will use another column to store their values. When you restore the data type,
previously stored values are visible again.

You can find more examples in the source code: see directory “example/” and the
tests.

Data types

Metadata-driven structure extends flexibility but implies some trade-offs. One
of them is increased number of JOINs (and, therefore, slower queries). Another
is fewer data types. Theoretically, we can support all data types available for
a storage, but in practice it would mean creating many columns per attribute
with just a few being used – exactly what we were trying to avoid by using EAV.
This is why EAV-Django only supports some basic types (though you can extend
this list if needed):

	Schema.TYPE_TEXT, a TextField;

	Schema.TYPE_FLOAT, a FloatField;

	Schema.TYPE_DATE, a DateField;

	Schema.TYPE_BOOL, a NullBooleanField;

	Schema.TYPE_MANY for multiple choices (i.e. lists of values).

All EAV attributes are stored as records in a table with unique combinations of
references to entities and schemata. (Entity is referenced through the
contenttypes framework, schema is referenced via foreign key.) In other words,
there can be only one attribute with given entity and schema. The schema is a
definition of attribute. The schema defines name, title, data type and a number
of other properties which apply to any attribute of this schema. When we access
or search EAV attributes, the EAV machinery always uses schemata as attributes
metadata. Why? Because the attribute’s name is stored in related schema, and
the value is stored in a column of the attributes table. We don’t know which
column it is until we look at metadata.

In the example provided above we’ve only played with a text attribute. All other
types behave exactly the same except for TYPE_MANY. The many-to-many is a
special case as it involves an extra model for choices. EAV-Django provides an
abstract model but requires you to define a concrete model (e.g. Choice), and
point to it from the attribute model (i.e. put foreign key named “choice”). The
Choice model will also have to point at Schema. Check the tests for an example.

Documentation

Currently there is no tutorial. Still, the code itself is rather
well-documented and the whole logic is pretty straightforward.

Please see:

	tests [https://eav-django.readthedocs.org/en/latest/reference.html#tests], as they contain good examples of model definitions and queries;

	the bundled example (“grocery shop”, comes with fixtures);

	the discussion group [https://groups.google.com/forum/#!forum/eav-django].

Dependencies

In theory, Python 2.5 to 2.7 is supported; however, the library is only tested
against Python 2.6 and 2.7.

You’ll also need Django 1.1 or newer and a couple of small libraries:
django_autoslug and django_view_shortcuts. This is usually handled
automatically by the installer.

Alternatives, Forks

	django-eav [http://mvpdev.github.com/django-eav/]

	A fork of eav-django that became a new app. Doesn’t seem to be actively
developed but is probably better in certain aspects. The original author
of eav-django encourages users to give this app a try, too.

Author

This application was initially created by
Andrey Mikhaylenko [http://neithere.net]. For complete list of contributors
consult the AUTHORS file.

Please feel free to file issues and/or submit patches.

Licensing

EAV-Django is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 3 of the
License, or (at your option) any later version.

EAV-Django is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this program; see the file COPYING.LESSER. If not,
see GNU licenses [http://gnu.org/licenses/].

Details

	API Reference
	Admin

	Fields

	Forms

	Object Managers

	Widgets

	Contributors

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Andrey Mikhaylenko.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	EAV-Django 1.4.7 documentation

API Reference

Admin

	
class eav.admin.BaseEntityAdmin(model, admin_site)

	Base class for entity admin classes.

	
render_change_form(request, context, **kwargs)

	Wrapper for ModelAdmin.render_change_form. Replaces standard static
AdminForm with an EAV-friendly one. The point is that our form generates
fields dynamically and fieldsets must be inferred from a prepared and
validated form instance, not just the form class. Django does not seem
to provide hooks for this purpose, so we simply wrap the view and
substitute some data.

	
class eav.admin.BaseSchemaAdmin(model, admin_site)

	Base class for schema admin classes.

	
class eav.admin.BaseEntityInline(parent_model, admin_site)

	Inline model admin that works correctly with EAV attributes. You should mix
in the standard StackedInline or TabularInline classes in order to define
formset representation, e.g.:

class ItemInline(BaseEntityInline, StackedInline):
 model = Item
 form = forms.ItemForm

	
formset

	alias of BaseEntityInlineFormSet

Fields

	
class eav.fields.RangeField(*args, **kwargs)

	A multi-value field which consists of tho float fields.

	
widget

	alias of RangeWidget

Forms

	
class eav.forms.BaseSchemaForm(data=None, files=None, auto_id=u'id_%s', prefix=None, initial=None, error_class=<class 'django.forms.utils.ErrorList'>, label_suffix=None, empty_permitted=False, instance=None, use_required_attribute=None)

	Base class for schema forms.

	
clean_name()

	Avoid name clashes between static and dynamic attributes.

	
class eav.forms.BaseDynamicEntityForm(data=None, *args, **kwargs)

	ModelForm for entity with support for EAV attributes. Form fields are created
on the fly depending on Schema defined for given entity instance. If no schema
is defined (i.e. the entity instance has not been saved yet), only static
fields are used. However, on form validation the schema will be retrieved
and EAV fields dynamically added to the form, so when the validation is
actually done, all EAV fields are present in it (unless Rubric is not defined).

	
check_eav_allowed()

	Returns True if dynamic attributes can be added to this form.
If False is returned, only normal fields will be displayed.

	
save(commit=True)

	Saves this form‘s cleaned_data into model instance self.instance
and related EAV attributes.

Returns instance.

Object Managers

Widgets

	
class eav.widgets.RangeWidget(attrs=None)

	Represents a range of numbers.

 Copyright 2013, Andrey Mikhaylenko.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	EAV-Django 1.4.7 documentation

Contributors

EAV-Django was originally created by:

	Andrey Mikhaylenko <neithere@gmail.com>.

And here is a probably incomplete list of contributors – people who have
submitted ideas, patches, reported bugs, added translations and generally made
EAV-Django better:

	Danila Shtan

	Janosch Scharlipp

	Jordi Llonch

	alTus

	Felipe Vieira

	Adrien Lemaire

	Igor Tokarev

	Vladimir Korsun

	Jon Atkinson

	Marcio Mazza

	Your Name Here ;)

 Copyright 2013, Andrey Mikhaylenko.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	EAV-Django 1.4.7 documentation

 Python Module Index

 e

 			

 		
 e	

 	[image: -]
 	
 eav	

 	
 	
 eav.admin	

 	
 	
 eav.fields	

 	
 	
 eav.forms	

 	
 	
 eav.managers	

 	
 	
 eav.widgets	

 Copyright 2013, Andrey Mikhaylenko.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	EAV-Django 1.4.7 documentation

Index

 B
 | C
 | E
 | F
 | R
 | S
 | W

B

 	

 	BaseDynamicEntityForm (class in eav.forms)

 	BaseEntityAdmin (class in eav.admin)

 	BaseEntityInline (class in eav.admin)

 	

 	BaseSchemaAdmin (class in eav.admin)

 	BaseSchemaForm (class in eav.forms)

C

 	

 	check_eav_allowed() (eav.forms.BaseDynamicEntityForm method)

 	

 	clean_name() (eav.forms.BaseSchemaForm method)

E

 	

 	eav (module)

 	eav.admin (module)

 	eav.fields (module)

 	

 	eav.forms (module)

 	eav.managers (module)

 	eav.widgets (module)

F

 	

 	formset (eav.admin.BaseEntityInline attribute)

R

 	

 	RangeField (class in eav.fields)

 	RangeWidget (class in eav.widgets)

 	

 	render_change_form() (eav.admin.BaseEntityAdmin method)

S

 	

 	save() (eav.forms.BaseDynamicEntityForm method)

W

 	

 	widget (eav.fields.RangeField attribute)

 Copyright 2013, Andrey Mikhaylenko.
 Created using Sphinx 1.3.5.

 _static/file.png

_static/minus.png

search.html

 Navigation

 		
 index

 		
 modules |

 		EAV-Django 1.4.7 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Andrey Mikhaylenko.
 Created using Sphinx 1.3.5.

_static/comment.png

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/up-pressed.png

_static/comment-close.png

_static/comment-bright.png

